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Abstract. This paper describes two new pattern detection image ope-
rators, R7"*? and Ry, called, in a generic way, LBP-based relational ope-
rators (LBP-RO). The former is rotational invariant and allows sear-
ching for a particular pattern disposes in any direction, the later is a
binary operator designed to find image patterns that can be modeled by
a pattern function. Both of them are invariants against any monotonic
transformation of the image gray scale. We have applied these operators
in a case study dedicated to segment the ONH in eye fundus color pho-
tographic images. The new segmentation method, called GA+LBP-RO,
was compared to a competitive ONH segmentation method in the lite-
rature and the results obtained by our method proved to be equal to or
better.
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1 Introduction

Local Binary Patterns (LBP) are a type of features used for classification in
computer vision [6]. The calculation of that feature consists in comparing the
intensity of a pixel, g., with its neighboring pixels, g,, and considering the result
of each comparison as a bit in a binary string. In that comparison, only the sign,
s(z), is considered:

1, >0

s() = {O, = 1)

By assigning a binomial factor 27 for each comparison, s(g, — g.), we obtain
a unique LBPp r number that characterizes the spatial structure of the local
image texture:

P—1
LBPpr= Y s(gp—ge)2" (2)

p=0



where P controls the number of neighboring pixels, and R determines the
radial distance of the these pixels to the central pixel. As a advantage, LBPp r
operator is by definition invariant against any monotonic transformation of the
image gray scale.

A extension to the LBP original operator is LBPp'%*, described in [7]:

S o s(9p—gc) if U(LBPpg) <2
P+1 otherwise

LBPy = { (3)

where the superscript riu2 reflects the use of rotation invariant uniform pat-
terns that have U value of at most 2, and U(.) is a uniformity measure defined
by:

P—-1
U(LBPpr) =|s(go — gc) = s (gp—1 — ge)l + Y _ |5 (9p — 9c) — 5 (gp-1 — ge)|

p=1
| (4)
Thus, if U(LBPp r) < 2, then LBP}'# is calculated by counting the number
of ones in the binary string LB Pp r; otherwise all the other patterns are labe-
led as “miscellaneous” and collapsed into one value P + 1. This operator is an
excellent measure of the spatial structure of local image texture and is invariant
to rotations and against any monotonic transformation of the gray scale.
The idea of the LBP operator can be also extended by using relational fun-
ctions [8]:

%(x,y,rl,rg,qﬁ,n) - [07 1]” (5)

This function is calculated on a point (z,y) of the image, comparing the
intensity of n equidistant pairs of points located, respectively, to a distance
r1 and ro from the point (z,y). The radial vectors, r; and r2, always form a
constant angle defined by ¢. Based on different combinations of ry,rs and ¢,
local information at different scales and orientations can be captured. However,
that function does not provide rotational invariance.

Taking the above defined operators as inspiration, we describe in this paper
two new operators, denoted by R7%2 and Ry. The former is a rotational invariant
extension of R and the later is a LBP-based binary operator designed to find
image patterns that can be modeled by a function.

The article is organized as follows. Section 2 describes the two new operators
mentioned. In section 3, we test the performance of such operators to detect
patterns in a case study: segmentation of the optic nerve head in eye fundus
images. Finally, section 4 presents the conclusions and future work.

2 LBP-based Relational Operators

In this section, we describe two new image operators, R7%2? and R, based on
the concepts of LBP [6, 7] and relational function [8]. They will be called, in a
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Fig.1: Examples of pattern functions, fy(z), defined in a image point (zo,yo):
(a) generic function (b) ellipse arc function,

T,E (l‘)
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generic way, LBP-based relational operators (LBP-RO). On the one hand, R/
corresponds to an extension of (5) and is defined by:

§R71Aiu2(x7yarlar27¢7 n) — {07 1)

,(n+1)}

(6)

Here, the idea is to add rotational invariance, using the concept of uniformity

measure defined in (4). Thus, the computation of this operator is given by:

where

n—1 .
; o R ifU(Rix) <2
%muQ .Y, , . ¢, _ Zk—O
1@y ém) {n—f—l otherwise
le:S(g(anyQ)_g(xlayl))v k:O,l,...,(n—l)
n—1
U(Rix) =| Rio — Ry(n—1) | + Z | Rix — Rigr—1) |
k=1

and the coordinates of each pair of points to compare is given by

(x1,11) = (x + 71 - cos(k - 2m/n),y + 11 - sin(k - 2w /n)

(x2,42) = (& + 1y - cos(k-2m/n+ ¢),y + 1y - sin(k - 2m/n + ¢)

On the other hand, the second relational operator, Ro, is defined by

Ro (2, Y, Hay s fo(2),m) = {0,1}

(7)



where (z,y) are the coordinates of the image pixel on which the operator
is applied, and Ha, y, = {(zs,9:) |yi = fp(z:), i =1,...,n} is a set of n points
resulting from sampling the f,(x) function, called pattern function (see figure
1a). The computation of this operator consists in comparing the intensity value
of the pixels belonging to H,, ,, with the intensity value of the reference pixel,
according to the following criteria:

1 ng(xz;yz)29($7y)aVZ€{1a;n}

. (13)
0 otherwise

%2(%, vaxi,yi, fp(l'),n) = {

Note that the purpose of this relational operator is to identify a particular
pattern, defined by f,(z), in the neighborhood of the analysis point.

3 Case Study: Segmenting the ONH

The segmentation of the optic nerve head (ONH) is of critical importance in
retinal image analysis because ONH disturbances can be an initial symptom of
serious eye diseases. The ONH, also called optic disk or papilla, is oval-shaped
and is located in the area where all the retina nerve fibres come together to form
the start of the optic nerve that leaves the back of the eyeball. There is an area
without any nerve fibres called excavation (the centre of the papilla) and around
it another area can be found, the neuroretinal ring, whose external perimeter
delimits the papillary contour.
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Fig. 2: Block diagram summarizing the proposed method to segment the ONH.

The segmentation method here used is a variation of the method described
in [3] and with which will be compared (see Section 3.2). The main difference



between both methods lies in how to get the set of interest points (IPs). Here, the
IPs are obtained using LBP-ROs and, in the original method, they are obtained
using a domain-knowledge-based ad-hoc method. First of all, in order to reduce
the processing computational cost and the number of distractor patterns, the
process begins by automatically extracting a sub-window from the original image
that is approximately centered at a point of the papillary area [5]. Next, the two
LBP-ROs above defined are applied to the image sub-window! and the result
is a set of IPs points that have a high probability of belonging to the papillary
contour. Then, we use a genetic algorithm (GA) to find an ellipse whose contour
is formed by the maximum number of interest points. Finally, we select the best
genetic ellipse (papillary contour) from the final population as the solution to
our problem. The figure 2 summarizes the process.

3.1 LBP-RO Instantiation

Taking advantage of the characteristics of the operator Re, we proceed as follows.
Given an generic ellipse traced in the retinal image, 32 is applied only and
exclusively to those pixels belonging to the contour of this ellipse. To do that,
a function denoted by f7:5(x) is defined for each pixel of the contour. That
function corresponds to an ellipse arc which is parallel to the considered ellipse,
has a length, 7, and is separated a distance, £, (towards its outer side) from
the analysis pixel (x,y) (see figure 1b). This operator, thus instantiated, will be

hereinafter denoted by f2_o:

§R2_0 =R (2, y, Haiyis are(T),m) (14)

The better the ellipse approximates the contour papillary, the greater the
number of pixels belonging to the ellipse contour that satisfyfs ¢ = 1. This
follows from the definition of this operator and the property of the papillary
contour: frontier that separates the papilla (bright area) from the retina (darker
area). However, since infinite ellipses can be traced in the image, we will use
a genetic algorithm in order to search the optimal ellipse. To code this type of
solutions, the phenotypic space is transformed into a genotypic space consisting
of real vectors of five variables [z,y,a,b, d], where (z,y) represents the centre
of the genetic ellipse, (a,b) the magnitudes of its major and minor semi-axis
respectively and 6 the angle that its major axis forms with the x-axis. Finally,
by applying recombination, mutation and selection operators, a population of
chromosomes (ellipses) evolves until a finalization criterion is achieved. The de-
gree of approximation to the solution of each ellipse can be calculated using the
following fitness function:

ffitnessl = Z 8%270(1767:’/167%1’1'791" gfc(q’.)vn) (15)
(zx,yx) EGEC

! Specifically, the operators are applied to the V channel as result of transforming the
original RGB color space into HSV space.



where GEC' is the genetic ellipse contour. That is, this operator computes
the number of pixels belonging to GEC that satisfy $3 o = 1.

However, it is possible to refine the fitness function defined in (15). One must
take into account that the vessels are also delimited by boundaries separating
the retina (brighter areas) from the vessels (darker areas). So if we only applied
the fitness function defined in (15), the papillary contour could be formed by a
genetic ellipse whose contour pixels belong to vessel-retina boundaries or the pa-
pillary contour. In order to reduce this possibility, we will use the 7“2 operator,
instantiated by R772:

RG =R (2,7, 8) (16)

where r is a value bigger than the width of any vessel in the image. Here we
use the geometric property by which the width of a vessel is always smaller than
the width of the papilla. Then it is not difficult to check that, if a pixel belongs to
the papillary contour, we will obtain, with high probability, a value belonging to
the set {4,5}, as result of applying R]"“? to that pixel. Note that these two values
correspond, respectively, to patterns 00001111 (or their equivalents rotated) and
00011111 (or their equivalents rotated). On the other hand, if the same operator
is applied to a pixel belonging to the contour of a vessel, assuming uniform
retinal intensities and linear vessel shapes in the zone in which the operator
acts, we will obtain, with high probability, a value belonging to the set {7, 8}.
Note that these two values correspond respectively to patterns 01111111 (or
their equivalents rotated) and 11111111. The interesting thing about these two
pattern sets is that they are disjoint. However, in real situations, there is noise in
the image, that is, the retina is not always uniform, there are papillary contour
zones that are traversed by vessels and these vessels can be formed by curved
paths or branches. Therefore, the final idea is to use the two operators, 72
and %2 o, together to promote the synergy of detecting only papillary contour
points and avoid the occurrence of false positives. From the point of view of the
GA, it only involves changing the fitness function defined in (15) by this other:

Fritnesss = Y and (R, 5y, %2 o) (17)
=1
where
(18)

%riuQ {1 Z.f (%71“?02) € {4a 5}

L {45~ 0 otherwise

Finally, figure 3 shows two examples of how work the two LBP-OP in two
different genetic ellipses (upper row and lower row). The figures 3a and 3b are
the result of applying the operators R, o and 3‘%’1“17‘{24,5}, respectively, to the same
genetic ellipse, and figure 3c shows the result of applying the and operator.
Similar comments apply to lower row figures. It is easy to check that the total
number of points that verify both criteria (2 ¢ = 1 and 8‘3?“{2475} = 1) is greater



for the upper row ellipse (figure 3c) than the lower row one (figure 3f). Therefore,
the former will be a better approach to the papillary contour than the later one.

(f)

Fig. 3: Example of applying LBP-ROs to two different genetic ellipses (upper row
and lower row): (a)&(d) Rz_o; (b)&(e) R}™2, .1: (¢)&(f) and (énz_o,én;w{iﬁ}).

3.2 Results and Evaluation

To measure the performance of our algorithm, denoted by GA+LBP-RO, we
used DRIONS [1,3] and ONHSD [2,4] databases. In order to do the segmenta-
tion results quantitatively reproducible, we measured the average discrepancy
between the points of the contour obtained with the segmentation method and
a gold standard defined from a contour that was the result of averaging several
contours, each of them traced by an expert (two experts in DRIONS and four
in ONHSD). Here we use the concept of discrepancy, §, defined in [4]:

5 — e ([l = il )/ (o] +2))
N

where ¢ is the discrepancy measurement for the image j,i = 1,..., N, with IV
the number of angularly equidistant radial segments used for each measurement,
m? is the length of the radius defining the i-th point of the ellipse proposed for

the image 7, ,ug and crg are the mean and typical deviation, respectively, of the

(19)



lengths of the radii defining the i-th point of the contours traced by the experts
and belonging to the image j, and e= 0.5 is a small factor to prevent division
by zero when the experts are in exact agreement. To facilitate the visualization
of the results, a discrepancy curve is plotted, namely, the percentage of images
with discrepancy less than ¢ (y-axis) versus 0 (x-axis).

The parameter configuration used for the GA was the same as that used

in [3]. For the operator %{i“{i 5} the following final parameter configuration

was chosen: %;i“f4,5}(x,y, 10, 10, 7, 8) for DRIONS and 3‘%’1“1“34,5}(30,;(;,8,8,77,8)
for ONHSD. For the R, ¢ operator and for both databases, the final parameter
configuration was Rz o(z, y,'r'-le_w{,fffc(x), 8) .

The results obtained were coﬁlﬁared with the segmentation method described
in [3]. Thus, the figure 4 shows the discrepancy curves obtained from applying the
two methods to each image database. Owing to the stochastic nature associated
with the GA, each curve of discrepancy showed (both methods use a GA-based
approach) correspond to the result of averaging five curves obtained as a result
of executing the GA five times.
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Fig.4: Accumulated discrepancy results for our method, GA-+LBP-RO, versus
the segmentation method described in [3]: (a) DRIONS and (b) ONHSD data-
bases.

Looking at the figure 4, we can say that practically our method improves or
equals the performances of the other method in both databases. Beside, it must
be said that the procedure used by GA+LBP-RO to obtain the interest points
is more simple than that one used in [3]. Finally, we must emphasize that, unlike
the method with which is compared, GA+LBP-RO does not use any kind of
normalization in the images database?. That is possible because the two LBP-
RO used are invariant against any monotonic transformation of the images gray

2 In figure 4, the discrepancy curves of GA-+LBP-RO were obtained without norma-
lizing the databases.



scale. We have made experiments applying and not applying this normalization
phase (see figure 5). It is easy to see that, in both databases, the normalization
phase does not contribute to improve the discrepancy curves.
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Fig. 5: Discrepancy curves, using GA+LBP-RO, with and without normalizing
the image databases: (a) DRIONS (b) ONHSD.

4 Conclusions and Future Work

We have described two new image operators, 7?2 and R, called LBP-based
relational operators. The former is rotational invariant and allows searching for
a particular pattern disposes in any direction and computed from a symmetric
neighborhood. The later is not rotational invariant but allows searching for pat-
terns modeled by an asymmetric neighborhood characterized by a pattern fun-
ction, fp(x). Both of them are invariant against any monotonic transformation
of the gray scale. We have applied these operator successfully in a segmentation
method, called GA+LBP-RO, used to segment the ONH in eye fundus color
photographic images. The performances of GA+LBP-RO were compared to a
competitive method in the literature and the results obtained by our method
proved to be equal to or better. As future work, we propose to investigate other
types of LBP-RO and apply them to other image databases and other domains.
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